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Abstract

Can we tractably cut cake as to avoid jealousy? In this report∗ we provide an introductory
exposition to cake-cutting in the standard query model. We focus on the open problem of
obtaining envy-free allocations in polynomial queries. In particular, we highlight Aziz-Mackenzie
(2016) and Chéze (2021). The latter work revisits Webb’s super envy-free protocol (1999), of
which we provide an extended derivation and analysis. Inspired by the latter works, we present
some original progress towards a smoothed query complexity for envy-free cake-cutting.

∗This has not been subjected to the usual scrutiny reserved for formal publications.



1 Introduction

In the late 1940’s, Hugo Steinhaus had fair division on his mind. Specifically, how should a hetero-
geneous and divisible resource be fairly partitioned amongst a set of agents? Inspired by a childhood
memory, Steinhaus stylized the problem in terms of cutting cake and asked his advisees Banach and
Knaster about generalizing the two-person cut-and-choose procedure. In [Ste49], Steinhaus intro-
duced a proportional allocation procedure for n agents. Effectively, the work laid foundations for
the last 70 years of intensive research on fair division. In recent decades, the computational ques-
tions raised by cake-cutting have sustained a highly active research area in the TCS community—we
refer to [BCE+16] for a more comprehensive overview. In this report, we concern ourselves with the
following question, which we’ll revisit later.

Are envy-free allocations tractably computable?

The problem is commonly formalized as follows. The cake is represented by the unit interval
[0, 1]. There are n agents, collectively associated with measures µ1 . . . µn. Each measure is nor-
malized, i.e. µ([0, 1]) = 1 ∀i ∈ [n], nonnegative, nonatomic, and dominated by the Lebesgue
measure. By this last assumption the associated p.d.f.s exist, so with a slight abuse of notation we
denote µi(x) as the density at point x ∈ R when clear from context. An allocation is a partition
[0, 1] = W1 ⊔ · · · ⊔Wn where the ith piece belongs to the ith agent. There are standard notions of
fairness in cake-cutting, and we review the most necessary for this report. We say an allocation⊔n

i=1Wi is:

• proportional if µi(Wi) ≥ 1/n ∀i ∈ [n]

• equitable if µi(Wi) = µj(Wj) ∀i, j ∈ [n]

• envy-free if µi(Wi) ≥ µj(Wj) ∀i, j ∈ [n]

These allocations are also said to satisfy exact proportionality, exact equitability, and exact envy-
freeness, respectively. This is in contrast with a standard relaxation of each condition; obtained
from the above by fixing an ϵ > 0 and subtracting it from each right-hand side. Doing so yields the
conditions for ϵ-proportionality, ϵ-equitability, and ϵ-envy-freeness.

For each notion of fairness, there is an associated algorithmic problem of computing such an
allocation. With respect to a query model, the query complexity of a fair cake-cutting problem is
the minimum number of queries required from every algorithm to return such an allocation. Often,
cake-cutting algorithms operate in the so-called Robertson-Webb (RW) query model [WS07].

Definition 1.1 (Robertson-Webb (RW) Query Model). A cake-cutting algorithm in the RW query
model may only obtain information about the problem instance µ1 . . . µn via oracle access to the
following.

• Eval(i, x, y) : receive µi([x, y]) for any 0 ≤ x ≤ y ≤ 1 and i ∈ [n]

• Cut(i, x, α) : receive “cut-point” y such that µi([x, y]) = α for any 0 ≤ x ≤ y ≤ 1 and i ∈ [n]

Remark 1.2. It is common to describe this model in terms of “asking” the agents for these quanti-
ties. However, this brings into question how strategic behavior might affect the resulting allocation.
In short, if the agents only “care about” envy-freeness, then the models are equivalent, so we might
as well work in the above. We elaborate on this in Sec. 2.2.
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This query model naturally captures the efficiency of so-called discrete protocols, which prescribe
a turn-based approach in cutting and evaluating pieces of the cake. By contrast, a distinct class of
algorithms includes moving-knife protocols, which can’t be studied in the RW query model.

The problem of envy-free cake-cutting in the RW query model is summarized as follows.

Problem: EF Cake-Cutting
Input: RW query access to measures µ1 . . . µn

Output: An envy-free allocation [0, 1] =
⊔n

i=1Wi

Note we mandate that all of the cake is allocated (the “no-cake” allocation is trivially envy-free).
Thus, the initial question is precisely:

Is there an algorithm solving EF Cake-Cutting using at most poly(n) queries?

Interestingly, it was unknown until recently whether there existed a procedure that solved the above
in time O(f(n)) for some f : N → N. Indeed, the celebrated result of Aziz-Mackenzie [AM16] posi-
tively affirms this. Prior to their work, the best known procedure was due to Brams-Taylor [BT95],
which had the unfortunate drawback that it could take arbitrarily many queries, for any fixed n,
by an adversarial choice of input measures.

1.1 Overview

In Sec. 1.2, we briefly survey the state-of-the-art on query complexity bounds for proportional,
equitable, and envy-free allocations. An excellent survey of results for other fairness notions is given
in [BN22]. Through examples, in Sec. 2 we demonstrate techniques in the classical algorithms for
n = 2, 3, 4 which are historically significant. In the subsequent sections we focus on ideas presented
in [Chè20], which includes a probabilistic analysis of Webb’s super envy-free algorithm [Web99].
In Sec. 3 we give a new derivation and analysis of Webb’s algorithm. In Sec. 3.3 and Sec. 4, we
highlight the main ideas of [Chè20] and discuss a strengthening of their result.

1.2 Related Work

The query complexity of proportional cake-cutting is long-settled to be Θ(n log n), with the upper
bound established by [EP84] and the matching lower bound thanks to [EP06, WS07]. For equitable
allocations, [CP12] proved there is no finite procedure returning a connected1 and exact allocation for
general n. Moreover, they showed connected and ϵ-equitable allocations can be found in O(n log n

ϵ )
queries. Extending the aforementioned hardness result, [PW17] established a Ω(log ϵ−1/ log log ϵ−1)
lower bound for algorithms obtaining ϵ-equitable allocations (note the pieces may be disconnected).

For envy-freeness much, less is known. For connected and ϵ-envy-free allocations, [BN22] estab-
lished an O(n/ϵ) upper bound and Ω(log ϵ−1) lower bound. For exact allocations, [AM16] established
an O(n ↑↑ 6)2 upper bound, whereas [Pro09] gave a Ω(n2) lower bound. Recently, [Chè20] revisited
the algorithm of [Web99] to establish that the “perturbed query complexity” is nO(1) with high
probability, and that the average query complexity satisfies a similar bound. We elaborate more on
these last results in Sec. 3.3.

1i.e. each piece is a connected subinterval.
2Knuth’s up-arrow notation, n recursively exponentiated 6 times.

2



2 EF Cake-Cutting with Small n

Even for small constant n, bounds on the query complexity have been historically difficult to obtain.
As a warm-up, we’ll begin with the cut-and-choose procedure, known since antiquity.

2.1 n = 2: cut-and-choose procedure

Plainly stated, a first agent is arbitrarily chosen. Agent 1 cuts the cake in two pieces of equal µ1

measure, then agent 2 chooses the piece with higher µ2 measure. The first step costs 1 Cut query
(calling Cut(1, 0, 12)), and the second step costs 1 Eval query (say calling Eval(2, 0, 12))

3 to deter-
mine agent 2’s preference of the two pieces. Moreover, 2 queries are necessary—the algorithm could
err submitting only 1 query since it cannot obtain information about both measures. Envy-freeness
follows from the fact that each piece has equal µ1 measure (so agent 1 doesn’t envy agent 2), and
agent 2’s piece has larger µ2 measure than agent 1’s piece (so agent 2 doesn’t envy agent 1).

While simple, the cut-and-choose procedure hints at design principles present in more advanced
algorithms. Two broad ideas include the following:

• An agent who can choose their piece before another agent won’t be envious of the other agent.

• An agent who partitions the cake into equal pieces w.r.t. their own measure won’t be envious
given the opportunity to secure one of these.

Of course, the above arguments use the assumption that the agents truthfully report when
queried (implicit in Def. 1.1). What if we hadn’t made this assumption? Before demonstrating
extensions of the above principles, we make a detour to clarify the role of strategic behavior in
cake-cutting.

2.2 A Side Remark on Strategic Behavior

We elaborate on the point raised in Remark 1.2, which is particularly straightforward to illustrate
using the cut-and-choose procedure. Rather than receiving the responses in Def. 1.1, instead sup-
pose that the algorithm asks the corresponding agent for these quantities. If the utility of each agent
is measure of their piece, i.e. ui := µi(Wi), then the cut-and-choose protocol may be manipulated.
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Figure 1: Left: allocations from truthful reporting. Right: allocations from strategic reporting.
3Notice a second Eval query isn’t needed as the cake has unit measure.
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The following example is illustrated in Fig. 1. Suppose µ1(x) = I[x ∈ [2/3, 1]] and µ2(x) = 1 for
all x ∈ [0, 1]. If agents report truthfully, then agent 1 would cut the cake at x = 5/6 and receive the
allocation [5/6, 1] with utility 1/6. If agent 1 knows µ2, however, they may obtain a higher utility by
misrepresenting µ1 when asked for the initial Cut query. Specifically, reporting x = 2/3 allows them
to obtain the allocation [2/3, 1] with utility 1/3. Note, though, that in either case the resulting
allocation is envy-free, which seems to suggest that an algorithm returning envy-free allocations
does so regardless of whether the agents are strategic or not. To avoid a nuanced discussion beyond
the scope of this report, we simply assume the utilities are given by ui :=

∑
j ̸=i I[i envies j]. Then,

truthtelling is a dominant strategy, which substantiates our assertion in Remark 1.2.

2.3 n = 3: Selfridge-Conway Procedure

An envy-free protocol for n = 3 was independently discovered by John Selfridge and John Con-
way in the 1960’s. Building on ideas in the cut-and-choose procedure, their method contributed
a design principle to computing envy-free allocations: maintaining a partial allocation, we may
allow agents to trim already-cut pieces in effort to “balance discrepancy” across agents. To pro-
vide a more concrete understanding of these ideas, we detail the full protocol. Visualized below,
we indicate the allocations, cuts, and trims of the agents by their colors agent 1, agent 2, and agent 3.

To start, agent 1 cuts the cake into three pieces W1,W2,W3 of equal µ1 measure (2 Cut queries).
Then, agents 2 and 3 take turns indicating their favorite of the three pieces (4 Eval queries). If
they select different pieces, we are done—2 and 3 get their favorite pieces and agent 1 is satisfied
with the remaining piece (see Fig. 2).

W1 W2 W3

Figure 2: agent 1 cuts the cake such that µ1(W1) = µ1(W2) = µ1(W3)

Otherwise, agent 2 and 3 prefer the same piece, WLOG say W1. Then, agent 2 cuts W1 into
pieces W ′

1 and W ′′
1 such that µ2(W

′
1) = max(µ2(W2), µ2(W3)) (1 Cut query, we already know the

quantities on the right-hand side), i.e. they cut W1 such that one of the resulting pieces has the
same value as their second favorite of the original pieces (see Fig. 3). We set aside W ′′

1 , termed
the residue. Now the agents choose their favorite of the remaining pieces W ′

1,W2,W3 in the order
agent 3 → agent 2 → agent 1 (2 total Eval queries to learn agent 2 and agent 3’s measure of the
residue pieces). The only subtlety is that if agent 3 picks a “whole” piece, agent 2 must pick the
‘trimmed” piece (which they already claimed was equal in value to their favorite of the remaining
pieces, so they will happily take it). This yields a partial allocation that is envy-free. To see why,
note that agent 3 chose first, so they mustn’t be envious of the others (using the first principle
from the previous section). Moreover, since agent 2 determined the trimming, they are guaran-
teed a piece µ2 measure equal to their preferred whole piece. Finally, agent 1 is guaranteed a whole
piece of the original three they cut (using the second principle from the previous section) (see Fig. 4).

Now it remains to allocate the leftover residue. At first pass, this may resemble the problem we
faced initially, so it’s natural to doubt that the algorithm would terminate. This is not the case—the
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W ′
1 W ′′

1 W2 W3

“ residue ”

Figure 3: agent 2 trims their favorite piece such that µ2(W
′
1) = max(µ2(W2), µ2(W3)).

W ′
1 W2 W3 W ′′

1

Figure 4: residue placed aside and agents choose their pieces in the order agent 3, agent 2, agent 1.
This is an envy-free partial allocation.

remaining problem is subtly distinct from our starting problem! Suppose that in the previous step,
agent i ∈ {2, 3} received the trimmed piece and agent j ∈ {2, 3} received the whole piece. Consider
agent 1, who holds a whole piece in the partial allocation. Even if the rest of the unallocated cake
were to be allocated to agent i, agent 1 would not be envious of i. In this situation, it is said that
agent 1 dominates agent i. This notion is important in envy-free cake-cutting and was pivotal to
the development of Aziz-Mackenzie’s breakthrough generalization.

We return to the question of allocating the residue. Agent j cuts the residue into three pieces
they view as equal (2 Cut queries), then the agents choose their pieces in the order agent i → agent
1 → agent j (4 Eval queries to learn agent 2 and agent 3’s measure of the residue partition pieces)
(see Fig. 5).

W ′
1 W2 W3 W ′′

1

Figure 5: The agent who received the whole piece (agent 3 in this case), cuts W ′′
1 into three equal

pieces and agents choose in the order agent 2, agent 1, agent 3. The final total allocation is envy-
free.

The resulting allocation is envy-free. Indeed, see that agent i chooses first, so will not be envious
of the others pieces. Agent 1 dominates agent i and chooses before agent j, so agent 1 will not
envy either. Finally, agent j is indifferent to whichever piece they receive since they cut the pieces.
Moreover, this was obtained in 15 queries, although it is not clear whether this is tight. Evidently,
the principle of domination serves as a nice complement to the aforementioned principles.
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2.4 n = 4: Brams-Taylor and Aziz-Mackenzie

In [BT95], Brams and Taylor invented the first envy-free discrete protocol handling n = 4 and more
agents. Their procedure relied on the trimming technique developed by Selfridge and Conway—
searching for partial envy-free allocations whilst recursing on the residue. However, as mentioned in
Sec. 1, their algorithm could not be bounded based on the number of agents alone. Open for more
than two decades, this problem was resolved by [AM15] for n = 4 and generalized in [AM16] to
n ≥ 4 agents. Extending the aforementioned techniques, their additional innovation was allowing
agents to permute their pieces as to ensure envy-freeness, but also increase the number of dominat-
ing agents. In turn, this enables one to remove a dominating agent and call a Selfridge-Conway-like
procedure on the remaining cake and agents. Currently, the best bound on this procedure’s queries
is O(n ↑↑ 6). For the remainder of this section, we present an example that highlights their proce-
dure on the n = 3 case, and omit the query tally for clarity.

W ′
1W ′′

1 W2 W3

W1 W2 W3

Figure 6: The initial steps of the procedure. agent 1 cuts the cake into three equal pieces w.r.t.
their measure. If agent 2 and agent 3 prefer the same piece W1, they each mark it such that the
right-hand portion of their mark is equal in measure to their respective second favorite of W2 and
W3. W1 is cut into W ′

1 and W ′′
1 at the mark farthest left, in this case agent 2’s mark. agent 3

receives W ′
1, agent 2 picks their favorite of the remaining pieces, and agent 1 recieves the remaining

piece.

The procedure begins in a manner similar to the Selfridge-Conway procedure (see Fig. 6). Like
Selfridge-Conway, the resulting partial allocation is envy-free, and leaves a residue W ′′

1 . Notably,
agent 1 dominates agent 3 since agent 1 receieved a whole piece. However, agent 1 doesn’t dominate
2 since agent 2 could potentially get the residue. If we could augment the partial allocation such
that agent 1 dominates agents 2 as well, then agent 1 could be removed from the procedure entirely!
Following this, we may recurse on the smaller subproblem to deal with the residue.

For instance, consider a case in which we have achieved two successive partial allocations (Fig. 7).
Suppose that in each case, agent 3 receives the trimmed piece (i.e. that they marked a line to the
right of agent 2’s line). Each time, they recieve a ”bonus,” i.e. the piece between the red and
green lines in Fig. 6, say with measure b1 and b2. The next step advocates to swap the pieces of
agents 2 and 3 in the allocation where bi is the smallest, say the first partial allocation. This breaks
envy-freeness in the first allocation but is offset by the fact that agent 3 received a larger bonus in
the second partial allocation—the overall partial allocation remains envy-free. Notably, both agents
2 and 3 have received trims from pieces originally cut by agent 1 and are therefore dominated by
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swap

βα

α′ β′

Figure 7: Assume agent 3 receives the trimmed piece both times, and recieves “bonus” b1 and b2 in
each allocation, respectively. Suppose that agent 3 more additional measure in the second(lower)
partial allocation. Then by swapping the pieces of agent 2 and agent 3 in the first(upper) partial
allocation, we retain an overall envy-free partial allocation, but now agent 1 dominates the remaining
agents and can be removed from future allocations.

agent 1. We can now remove agent 1 and run the same protocol on the remaining residue with
agents 2 and 3, which amounts to cut-and-choose for this instance. For a detailed depiction of the
procedure on n = 4 agents, see [AM20].

In the next section, we introduce Webb’s algorithm—an important pre-requisite for understand-
ing Cheze’s result and our follow-up work.

3 Webb’s Algorithm

3.1 Notation

Let a, b be real scalars. For ϵ > 0, we say a ≈ϵ b if |a − b| ≤ ϵ. We say a ≲ b if a ≤ Cb for some
absolute constant C > 0 and a ≍ b if a ≲ b and a ≳ b.

3.2 Derivation

Remarkably, an envy-free allocation can be found in nO(1) additional queries given a “good enough”
starting partition. Somewhat orthogonal to the previously mentioned techniques, this observation is
captured in Webb’s algorithm [Web99], which we’ll derive in a way we imagine the author might’ve.
Suppose we begin with an initial “guess” partition [0, 1] =

⊔n
k=1Wk. No matter which partition we

begin with, we may attempt to subdivide these pieces into a finer partition [0, 1] =
⊔n

k=1(
⊔n

i=1W
i
k),

allocating the piece
⋃

k=1W
i
k to the ith agent (see Fig 8). Of course, we want this final allocation

to be envy-free. It suffices for these pieces to satisfy the following system of inequalities.

µi(W
j
1 +W j

2 + · · ·+W j
n) =

{
> 1/n j = i

< 1/n j ̸= i
∀i ∈ [n] (1)

Such an allocation satisfies the more stringent condition of being super envy-free. Why should
we aim for a stronger property? Conveniently, we already have a simple and complete existential
characterization, due to Barbanel.

7



W1 W2 Wn

W 1
1 W 2

1 · · · Wn
1 W 1

2 W 2
2 · · · Wn

2 W 1
n W 2

n · · · Wn
n

. . .

Figure 8: Subdivision of initial “guess” partition.

Theorem 3.1 ([Bar96]). A super envy-free subdivision of W ⊆ [0, 1] exists if and only if µ1 . . . µn

are linearly independent measures, i.e.
∑

ciµi = 0 only for the trivial c⃗.

Hence, we’ll assume throughout this section that the input measures are linearly independent.
Our overall goal is to re-cast the problem of obtaining a finer partition satisfying (1) as solving a
particular linear system. To this end, suppose we pick some δ > 0 (to be decided later) such that

µi

(
n∑

k=1

W j
k

)
=

{
1/n+ δ j = i

1/n− δ/(n− 1) j ̸= i
(2)

We momentarily ignore the 1/(n − 1) factor in the case j ̸= i. Recalling that Wk denotes the kth

piece of the original partition, we can re-write the left-hand side.

µi

(
n∑

k=1

W j
k

)
=

n∑
k=1

µi(W
j
k ) =

n∑
k=1

µi(Wk) ·
µi(W

j
k )

µi(Wk)
:=

n∑
k=1

µi(Wk) ·Rk,j,i (3)

Here, Rk,j,i has the natural interpretation as the “fractional worth of the jth subdivision of the kth

piece as seen by agent i”. Notably,
∑n

j=1Rk,j,i = 1 ∀k, i. But (2) does not quite reflect a linear
system, so we’ll assume that all agents “see the same fractional worth” of each subdivision. More
precisely, we assume that for all i ̸= i′ we have Rk,j,i = Rk,j,i′ . In this case, we can instead deal
with the following refinement of (2).

n∑
k=1

µi(Wk) ·Rk,j =

{
1/n+ δ j = i

1/n− δ/(n− 1) j ̸= i

Now we genuinely have a linear system. Explicitly,
µ1(W1) . . . µ1(Wn)
µ2(W1) . . . µ2(Wn)

...
. . .

...
µn(W1) . . . µn(Wn)


︸ ︷︷ ︸

M

R =


1
n+δ 1

n−
δ

n−1 . . . 1
n−

δ
n−1

1
n−

δ
n−1

1
n+δ . . . 1

n−
δ

n−1
...

...
. . .

...
1
n−

δ
n−1

1
n−

δ
n−1 . . . 1

n+δ


︸ ︷︷ ︸

Nδ

.

We’ll later see there is a natural choice for δ based on M. With this in mind, once M is
determined and if it is nonsingular, then one can recover R and attempt to subdivide as in Fig. 8

8



such that the entries of R have the endowed interpretation. If this subdivision is successful, then
by the above we satisfy (2) and are done. In summary, Webb’s algorithm is “trying” to do the
following.

1. Obtain M, stop if M is singular

2. Pick δ depending on M, compute R = M−1Nδ

3. Subdivide each of W1 . . .Wn such that for each k, j we have µi(W
j
k )/µi(Wk) = Rk,j ∀i ∈ [n]

4. Allocate
⋃

k=1W
i
k to the ith agent, i.e. as in Fig. 8

It remains to specify the choice of δ and the details of step 3. Revisiting the choice of δ > 0,
recall that R must be row stochastic and nonnegative. Indeed, the first desiderata is satisfied since

R1 = M−1(Nδ1) = M−1(1) = M−1(M1) = 1.

Notably, this elucidates the 1/(n − 1) renormalization in the off-diagonals of Nδ. For the nonneg-
ativity, first note the above shows M−1 is row stochastic. Denoting t as the minimum entry of
M−1,

Rkj =

n∑
i=1

(M−1)ki(Nδ)ij

=

n∑
i=1

(M−1)ki

((
1

n
+ δ

)
I[i = j] +

(
1

n
− δ

n− 1

)
I[i ̸= j]

)
= (M−1)kj

(
1

n
+ δ

)
+
(
1− (M−1)kj

)( 1

n
− δ

n− 1

)
= (M−1)kj

(
1

n
+ δ − 1

n
+

δ

n− 1

)
+

1

n
− δ

n− 1

= (M−1)kj

(
δ +

δ

n− 1

)
+

1

n
− δ

n− 1

≥ t

(
δ +

δ

n− 1

)
+

1

n
− δ

n− 1
.

Thus, to have Rkj ≥ 0 it suffices to impose

t

(
δ +

δ

n− 1

)
+

1

n
− δ

n− 1
≥ 0 ⇐⇒ t (δn) +

n− 1

n
− δ ≥ 0

⇐⇒ n− 1

n
≥ δ(1− tn)

⇐⇒ δ ≤ n− 1

n(1− tn)
.

Hence, any choice of δ ∈ (0, n−1
n(1−tn) ] will satisfy our purposes.

We now handle step 3 using a blackbox reduction to obtaining so-called ϵ-exact partitions.

Definition 3.2 (“ϵ-exact partitions”). Let W ⊆ [0, 1] and fix some measures µ1 . . . µn. Letting ϵ > 0
and α⃗ = (α1, . . . , αn) be a point on the simplex in Rn, we say a partition W = W 1 ⊔ · · · ⊔Wn is
ϵ-exact for fractions α⃗ if ∀i, j µi(W

j)
µi(W ) ≈ϵ αj.
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Fortunately, we can efficiently obtain these partitions efficiently, as the next result shows.

Theorem 3.3 ([RW97], [RW98]). There’s an algorithm NearExact(W, α⃗, ϵ) which outputs an ϵ-exact
partition W = W1 ⊔ · · · ⊔Wn in ≲ n2.5/ϵ RW queries on any instance µ1 . . . µn.

The procedure asks the first agent to provide k partition points so that the µ1 measure of each
slice is at most 1/k (inducing ≲ k Cut queries), then has the second agent “add” ≤ k − 1 more
partition points so that the µ2 measure of each slice is at most 1/k (inducing ≲ k Cut queries), and
so on. For k sufficiently large, one can show that the final subintervals can be glued together to
form a coarser partition which satisfies the desired properties4.

Thus, by taking small enough ϵ, we can simply call NearExact(Wk, α⃗, ϵ) on each Wk such that
the obtained allocations still satisfy (1). For instance, as the off-diagonal-diagonal gap in (2) is
≥ δ, then we can take5 ϵ ≤ δ

3 so that we ultimately satisfy (1). Webb’s algorithm is summarized in
algorithm 1.

Algorithm 1 Webb’s Super Envy-Free Protocol
Input: RW query access to µ1 . . . µn, starting partition [0, 1] = ⊔n

i=1Wi

Output: A (super) envy-free allocation W ∗
1 . . .W ∗

n

1: Mij = µi(Wj), stop if not invertible

2: t := min entry of M−1, δ = n−1
n(1−tn)

3: Compute M−1Nδ = R :=

R⃗1

...

R⃗n


4: For each i ∈ [n], call NearExact(Wk, R⃗k,

δ
3) to get W 1

k . . .Wn
k

5: Return W ∗
i = W i

1 ⊔W i
2 ⊔ · · · ⊔W i

n ∀i ∈ [n]

The runtime analysis is particularly simple. Step 1 takes n2 Eval queries. Step 4 takes
≲ n2.5

δ · n ≲ n3.5(1− tn) Cut queries by Theorem 3.3. Notably t ≤ 0, for otherwise the dot product
of the ith row of M−1 and the jth column of M is positive, which contradicts the off-diagonals of
M−1M = I. Moreover, |t|2 ≤ ∥M−1∥2F ≤ ∥M−1∥22. Observing ∥M∥2 ≥ 1, the above implies step 4
takes ≲ n4.5∥M−1∥2 ≤ n4.5∥M∥2∥M−1∥2 = n4.5κ(M) queries in the worst case.

Combined with our derivation, we’ve shown the following result.

Theorem 3.4 ( [Web99]). If (i) µ1 . . . µn are linearly independent and (ii) the matrix Mij = µi(Wj)
is nonsingular for a starting partition [0, 1] =

⊔n
i=1Wi, then algorithm 1 returns a (super) envy-free

allocation in ≲ n4.5κ(M) RW queries.

We’ve discussed that condition (i) is necessary for a super envy-free allocation. On the other
hand, (ii) may not hold for a arbitrary starting partition. For instance, consider the n = 2 instance
in Fig. 9 where θ := 1/2. Taking W1 = [0, 1/2 − ϵ] and W2 = [1/2 − ϵ, 1] yields a singular
M = [1/2− ϵ, 1/2 + ϵ; 1/2− ϵ, 1/2 + ϵ] due to the “cancellation across the peaks”, even though the
measures are linearly independent.

4For more details, we refer the reader to Theorem 10.2 [RW98].
5In the original work ϵ := δ/n2, which seems unnecessarily small.
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µ1, µ21

1
2

3
2

ϵ
2

θ 1

Figure 9: (i) doesn’t imply (ii) in Theorem 3.4.

One may hope that choosing a random partition may circumvent these hard instances, i.e.
sampling n − 1 partition points from Unif[0, 1]. However, the same example above can be used to
construct a hard instance family. Consider an adversary who draws θ ∼ Unif[0, 1] and takes ϵ to
approach 0. Indeed, for M to be nonsingular at least one point must land in the region [θ− ϵ, θ+ ϵ].
However, the Lebesgue density of this region is ≲ ϵ so the probability that the partition witnesses
the linear independence6 of the measures is vanishingly small, i.e. M will be singular with over-
whelming probability.

Although [Web99] didn’t acknowledge these hard instances, we imagine the author had them
in mind as they advocated for a brute-force approach to find a nonsingular M. Specifically, they
advocate for a sequential procedure: at iteration i = 1, 2, 3, . . . , partition [0, 1] into 2i intervals and
test the singularity of M under all possible partitions to n players comprised of these intervals.
Imagining an instance of the above hard example where ϵ ≲ 2−n, it’s clear that ≳ 2n intervals will
be needed to obtain a nonsingular M. Hence, this iteration of Webb’s proposed solution would need
to try at least ≳ n2n partitions, costing at least as many queries.

3.3 Chèze’s Result

Disembarking from recent algorithmic ideas for envy-free cake-cutting, in [Chè20] the author revisits
the algorithm of [Web99]. In the spirit of smoothed analysis, the nice insight of this work is that
the hard instance families for Webb’s algorithm are seemingly “brittle”. Their main result is the
following.

Theorem 3.5 ([Chè20]). Consider an instance of algorithm 1 inducing a matrix M. Fix a σ > 0.
If µi(x) > σ everywhere and E is a random matrix with iid entries in (−σ, σ), then replacing the
matrix M in algorithm 1, step 1 with the matrix M̃ij = (Mij + Eij)/(

∑n
j=1(Mij + Eij)) results

in a procedure using more than Cσn
O(1) queries with probability o(n−1). Here, Cσ is a quantity

depending on σ but not on n.

Although not quite a smoothed analysis result, the above morally suggests that Webb’s is effi-
cient for “realistic” inputs. By a runtime characterization similar to the bound in Sec. 3, the proof
follows by an anti-concentration of the minimum singular value of M̃, thanks to a result from Tao-
Vu [VT07]. Unfortunately, the analysis in [VT07] does not track the dependence on σ. As a result,

6One should keep in mind that linear independence isn’t necessary for efficient envy-free allocation. As an extreme
example, consider the number of queries sufficing for µ1 = · · · = µn.
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Theorem 3.5 does not explain the dependence of σ on the query complexity (e.g. it doesn’t rule
out exponential dependence on σ−1). Moreover, it is not known whether the allocation returned
by this algorithm is envy-free with respect to the original measures — it seems plausible that for
a sufficiently small perturbation this could be the case. Finally, it is natural to ask whether the
restriction to positive densities can be relaxed.

In the next section, we present work resolving some of these concerns for certain “natural”
perturbation models. Namely, that the dependence on σ−1 is polynomial and the restriction to
positive densities can be removed.

4 Towards a Smoothed Analysis

Inspired by the ideas in [Chè20], in this section we make progress towards obtaining a smoothed
query complexity for EF Cake-Cutting. To define our space of perturbations, recall the input to
Webb’s algorithm is fully specified by a partition, say W, and input measures µ := (µ1, . . . µn).

Definition 4.1 ( Perturbation Model for Webb’s). Fix σ > 0, and let φ be a p.d.f. with nonnegative
support. For Webb’s instance Iµ,W , let Iσµ′,W be the random instance given as follows. Let P ∈ Rn×n

be a random matrix with iid entries “drawn from” φ, and set for each i ∈ [n]

µ′
i(x) = µ′

i([0, 1])
−1(µi(x) + σPij) ∀x ∈ Wj

(see Fig. 10 for a visualization). Notably,

• under the original input Iµ,W , algorithm 1 works with Mij = µi(Wj)

• under the random perturbed input Iσµ′,W , algorithm 1 works with M̃ := D(M + σP) where

D = diag
[
(1 + Σn

j=1σP1j)
−1, (1 + Σn

j=1σP2j)
−1, . . . , (1 + Σn

j=1σPnj)
−1)
]

Two natural perturbation models are given by taking φ to be either Unif[0, 1], or the half-
normal distribution |N (0, 1)|. We conjecture that for these models the smoothed query complexity
is poly(n, σ−1).

Conjecture 1. Let σ > 0, and suppose φ is either Unif[0, 1] or |N (0, 1)| in the above perturbation
model. Denoting Q(I) as the number of queries used by Webb’s algorithm on input I, then

max
Iµ,W

EI∼Iσ
µ′,W

[Q(I)] ≲
poly(n)

σ2
.

Recalling the runtime bound from the last section, such a conjecture is morally equivalent to
the following.

Conjecture 2. Let M be a nonnegative and row stochastic matrix. Let P ∈ Rn×n be a random
matrix with iid entries “drawn from” φ, where φ is either Unif[0, 1] or |N (0, 1)|. Let σ > 0, and
D = diag

[
(1 + Σn

j=1σP1j)
−1, (1 + Σn

j=1σP2j)
−1, . . . , (1 + Σn

j=1σPnj)
−1)
]
. Then,

EPij∼φ[κ(D(M+ σP))] ≲
poly(n)

σ2
.
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Iµ,W (unperturbed input)

W1 W2 W3

Iσµ′,W for σ small Iσµ′,W for σ med. Iσµ′,W for σ large.

Figure 10: Examples of realized instances under Def. 4.1.

How do we hope to prove the above? A natural approach is to control the integral-over-tails
representation of the expectation via bounds on the extreme singular values. By Cauchy-Schwarz
and standard arguments, one can show ∥D(M+σP)∥2 ≲ (1+σ)

√
n with exponentially small failure

probability, so the key challenge lies in obtaining a anti-concentration for σn(D(M+σP)). There is a
rich literature on anti-concentrations for randomly perturbed matrices (e.g. [RV09, VT07, SST06]),
with an excellent exposition of the main strategies in [Tao12]. A key technique uses the character-
ization of the smallest singular value as the largest distance from any fixed row of M + σP to the
hyperplane spanned by the other rows. Concretely, this amounts to obtaining P[|⟨t,v⟩| ≤ ϵ] ≲ ϵ/σ2

where v is a row of M + σP and t is the normal unit vector to the induced hyperplane. When
P has Gaussian entries, then ⟨t,v⟩ ∼ N (0, σ2) so one can use a “small rectangle approximation”
of the p.d.f. to achieve this. Closer to our setting, the p.d.f. of a linear combination Unif[0, 1]
(or |N (0, 1)|) does not have a easy-to-bound closed form (e.g. [Fle71, RP49]). However, it seems
plausible that such a condition could be proved, for instance, using ideas from anti-concentrations
of polynomials [MNV16].

On a side note, it is a standard technique to approximate the p.d.f. of ⟨t,v⟩ by a Gaussian
under the correct normalization via Berry-Esseen type estimates. Recall that such estimates give a
quantitative form the of the CLT.

P

[
x ≤ ⟨t,v − E[v]⟩√

Var(⟨t,v⟩
) ≤ y

]
≈λ PG∼N (0,1) [x ≤ G ≤ y] , λ ≲

∑n
i=1 t

3
iE[|vi − E[vi]|3]

Var(⟨t,v⟩)3/2
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However, since t is a random vector with a complicated distribution, bounding t by a worst-case
choice diminishes hope for controlling such a term, which would be aided by a lower bound on the
entries of t (it could be very sparse).

Nonetheless, we obtain a preliminary result towards Conjecture 1.

Proposition 4.2. Let σ ∈ (0, 1/n), and suppose φ ≡ |N (0, 1)| in the perturbation model. Denoting
Q(I) as the number of queries used by Webb’s algorithm on input I, then

max
Iµ,W

EI,I′∼Iσ
µ′,W

[
min{Q(I), Q(I′)}

]
≲

2n
2

σ2
.

The guarantee is much weaker than conjectured, but substantially smaller than the iterated
tower estimate in [AM16]. Moreover, our result suggests the dependence on the perturbation
is indeed polynomial. Note that we average over a “two-draw” neighborhood. We should em-
phasize that the guarantee holding for two draws (as opposed to, say, n draws) morally sug-
gests that the effect is not due to concentrations. At a high-level, our proof in Sec. 4.1 bounds
EGij∼N (0,σ2)[κ(D(M + G))] using tools from [SST06], which then translates to a bound on the
quantity EPij∼|N (0,1)[κ(D(M+ σP))] via a change-of-measure argument.

4.1 Proof of Prop. 4.2

In this section we use the following facts.

Fact 4.3 (Cauchy-Schwarz). If A,B are square & nonsingular, then κ(AB) ≤ κ(A)κ(B)

Fact 4.4 (Union bound+normality). Let X1 . . . Xn be iid draws from N (µ, σ2). If µ = O(1), then
for any s > 0 we have P[maxi |Xi| ≥

√
2σ2 log 2n+ s] ≲ e−s/2σ2.

Fact 4.5 (Paley-Zygmund Inequality). Let Z be a nonnegative random variable with finite variance.
For any θ ∈ [0, 1], we have P[Z > θE[Z]] ≥ (1− θ)2 E[Z]2

E[Z2]
.

Fact 4.6 ([Wsc04, SST06]). If A ∈ Rn×n with ∥A∥2 ≤
√
n, Gij ∼ N (0, σ2), σ2 ≤ 1, then for all

x ≥ 1, P[κ(A+G) ≥ x] ≲
√
n log x
xσ .

Fix an instance µ and W. To prove Prop. 4.2, by Theorem 3.4 and Def. 4.1 it suffices to show

EP1,P2∼|N (0,1)|

[
min{κ(M̃1), κ(M̃2)}

]
≲ 2n

2
/σ2. (4)

To accomplish this, we’ll instead show7

EG1,G2∼N (0,σ2) [min{κ(D1(M+G1)), κ(D2(M+G2))}] ≲ poly(n)/σ2, (5)

which we can use to establish (4) as follows. Denote h and h′ as the p.d.f.s of N (0, σ2) and |N (0, σ2)|,
respectively. Viewing f(G1,G2) := min{κ(D1(M + G1)), κ(D2(M + G2))} as a function of 2n2

variables, we have

EP1,P2∼|N (0,1)|

[
min{κ(M̃1), κ(M̃2)}

]
= EG1,G2∼|N(0,σ2|[f(G1,G2)]

7Actually, we’ll show this is bounded by ≲ n/σ2.
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=

∫
· · ·
∫
R2n2

f(x⃗)
2n2∏
i=1

h′(xi)dxi

=

∫
· · ·
∫
R2n2

f(x⃗)
2n2∏
i=1

h′(xi)

h(xi)
h(xi)dxi

≤
∫

· · ·
∫
R2n2

f(x⃗)
2n2∏
i=1

2 · h(xi)dxi

= 22n
2
EG1,G2∼N (0,σ2) [f(G1,G2)]

≲ 2n
2
/σ2.

Therefore, we just need to prove (5). To this end, suppose that the following claim is true.

Proposition 4.7. Let σ ∈ (0, 1/n). Letting Xij ∼ N (0, σ2), denote D as the random diagonal
matrix with Dii =

1
1+

∑
j Xij

. Then, P[κ(D) ≥ t] ≲ n/z1.5

Proof. Let Yi := 1 +
∑

j Xij , noting these may be treated as iid samples from N (1, nσ2). We have

κ(D) =
maxi |(1 +

∑
j Xij)

−1|
mini |(1 +

∑
j Xij))−1|

=
maxi |Yi|
mini |Yi|

.

We may write

P
[
maxi |Yi|
mini |Yi|

≥ z

]
≤ P

[
maxi |Yi|
mini |Yi|

≥ z | max
i

|Yi| <
√
2Var(Y ) log 2n+ s

]
+ P

[
max

i
|Yi| >

√
2Var(Y ) log 2n+ s

]
≤ P

[√
2nσ2 log 2n+ s

mini |Yi|
≥ z

]
+ e−s/2nσ2

(by Fact 4.4)

≤ P

[√
2(1/n) log 2n+ s

mini |Yi|
≥ z

]
+ e−sn/2 (σ ≤ 1/n)

≲ P
[
min
i

|Yi| ≤
s

z

]
+ e−sn/2 (n large)

Moreover,

P
[
min
i

|Yi| ≤
s

z

]
= 1− P

[
min
i

|Yi| >
s

z

]
= 1− PY∼N(1,nσ2)

[
Y 2 >

s2

z2

]n
(6)

Here we invoke Fact 4.5 for the random variable Y 2, noting that

• E[Y 2] = Var(Y ) + E[Y ]2 = nσ2 + 1

• E[Y 4] = 1 + 6nσ2 + 3n2σ4 (fourth moment of N (µ, σ2) is µ4 + 6µ2σ2 + 3σ4)

Taking θ := s2

z2
1

nσ2+1
(and noting that s ≤ z is required), we have

P
[
Y 2 > θE[Y 2]

]
= P

[
Y 2 >

s2

z2

]
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≥
(
1− s2

z2
1

nσ2 + 1

)2
(nσ2 + 1)2

1 + 6nσ2 + 3n2σ4

≳

(
1− s2

z2

)2

(n large, σ ≤ 1/n)

Thus, P
[
mini |Yi| ≤ s

z

]
≲ 1−

(
1− s2

z2

)2n
. Overall, for any s > 0 and s ≤ z, we have

P [κ(D) ≥ z] ≲ 1−
(
1− s2

z2

)2n

+ e−sn/2

Taking s = z1/4, and using Taylor expansion of 1− (1− x)n for x ∈ [0, 1], and n ≥ 2

P(κ(D) ≥ z) ≲ 1−
(
1− 1

z1.5

)2n

+ e−z1/4n/2 ≲ n/z1.5 + e−z1/4 ≲ n/z1.5.

We are now ready to prove (5). Fix some ϵ > 0 to be decided later. We have that

EG1,G2∼N(0,σ2) [min{κ(D1(M+G1)), κ(D2(M+G2))}]

≲
∫ ∞

1
P(min{κ(D1(M+G1)), κ(D2(M+G2))} ≥ x)dx

=

∫ ∞

1
P(κ(D(M+G)) ≥ x)2dx

≲
∫ ∞

1
P(κ(D)κ(M+G) ≥ x)2dx (by Fact 4.3)

≲
∫ ∞

1
(P(κ(D)κ(M+G) ≥ x and κ(D) < xϵ) + P(κ(D) ≥ xϵ)2 dx

≲
∫ ∞

1

(
P(κ(M+G) ≥ x1−ϵ and κ(D) < xϵ) + P(κ(D) ≥ xϵ

)2
dx

≲
∫ ∞

1

(
P(κ(M+G) ≥ x1−ϵ) + P(κ(D) ≥ xϵ

)2
dx

≲
∫ ∞

1

(√
(1− ϵ)n log x

x2(1−ϵ)σ
+

n

x1.5ϵ

)2

dx (by Prop. 4.7 and Fact 4.6)

Taking ϵ = 1/3+∆ for ∆ > 0 yields that this integral is ≲ n
σ2 +n2. And σ2 ≤ 1/n2 =⇒ 1/σ2 ≥ n2,

yielding overall this integral is ≲ n/σ2. Hence, by this point we’ve shown (5), so we are done.
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